In recent years, the observed orbital geometry of extreme trans-Neptunian objects (TNOs) has provided tantalizing evidence predicting the existence of an as-yet undiscovered “Planet Nine.” Combined with orbit stability models, these observations permit a detailed prediction of Planet Nine's properties, with a shrinking parameter space as more of these rare objects are discovered. I will present the first results from a new survey utilizing light curve data from the Transiting Exoplanet Survey Satellite (TESS) to search for TNOs at distances 70-800 au, with a magnitude limit V~22. This survey leverages an innovative new pipeline designed to extract the locations, magnitudes, and 27-day orbital arcs of undiscovered outer solar system objects, including both Planet Nine and the population of extreme trans-Neptunian objects pertinent to the Planet Nine theory, using a blind shift-stacking search along all plausible outer solar system orbits. Together with the extensive sky coverage of the TESS survey, this search will place stringent constraints upon the as-yet undiscovered TNO population, with great potential to either discover Planet Nine or almost entirely rule out its existence.