Skip to main content
SearchLoginLogin or Signup

Mercury’s Mantle: Gone with the (Solar) wind

Presentation #305.01 in the session “Moon and Mercury 2”.

Published onOct 26, 2020
Mercury’s Mantle: Gone with the (Solar) wind

Mercury possesses an anomalously large iron core, and a correspondingly high bulk density. Numerous hypotheses have been proposed in order to explain such a large iron content, though the ultimate cause remains unknown. A long-standing idea holds that Mercury once possessed a larger silicate mantle that was removed by a giant impact early in the the Solar system’s history. A central problem with this idea has been that silicate-rich material, having been ejected from Mercury, typically re-accretes onto the planet over short (~Myr) timescales. In this talk, I will show that the primordial Solar wind would have provided sufficient drag upon ejected debris to remove them from Mercury-crossing trajectories before re-impacting the planet’s surface. Specifically, the young Sun likely possessed a stronger wind, fast rotation, and strong magnetic field. Depending upon the time of the giant impact, the ram pressure associated with this wind would push particles outward into the Solar system, or inward toward the Sun, on sub-Myr timescales, depending upon the size of ejected debris. Accordingly, the giant impact hypothesis remains a viable pathway toward the removal of planetary mantles, both on Mercury and extrasolar planets, particularly those close to young stars with strong winds.

No comments here