Presentation #346.02 in the session “Stars: Ages & Abundances”.
Star clusters have been incredibly useful tools for studying the history of the Milky Way because they allow us to determine relative ages based on their chemical abundances. However, most stars are not in clusters, and isochrones used to determine ages for individual stars produce substantial uncertainties. A new age method enabled by the precise photometry data of the NASA Kepler satellite is asteroseismology. Asteroseismology allows us to probe the internal structure of stars that are affected by age and composition. This research aims to calibrate the relationships between age, chemical abundances, and asteroseismology by analyzing data of stars in star clusters, which provide an independent measure of the stars’ ages. This project aims to expand upon the currently used age and metallicity range and triple the number of open star clusters used to calibrate the asteroseismic age-mass-chemical abundance relation. We have combined asteroseismology data for stars in clusters within the Kepler 2 campaign fields with uniformly determined follow-up spectroscopic abundances from observations from the MMT.