Skip to main content
SearchLoginLogin or Signup

Spatial- and Temporal- Variations in Jupiter’s Atmosphere

Presentation #325.04 in the session Origin and Evolution of Giant Planet Systems I (Poster)

Published onOct 23, 2023
Spatial- and Temporal- Variations in Jupiter’s Atmosphere

Jupiter has ubiquitous clouds and enormous surface structures shrouding the planet. Juno MWR provides the unprecedented chance to answer remaining major questions about the composition and dynamical properties of the great bulk of the atmosphere that lies beneath. Since the launch of Juno, there has been a large effort to collect complementary ground- and space-based observations to help interpret the MWR data. The Jovian Infrared Auroral Mapper (JIRAM) onboard Juno complements the observations of MWR, by giving alternative and reference tropospheric measurements that provides the boundary condition for the interpretation of the MWR data [Adriani et al 2014]. Similarly, HST has a 6-month overlap with 13 Juno orbits and color images were constructed from images of Jupiter in red, green, and blue filters by JunoCam [Hansen et al., 2014]. We study the dynamics within the atmosphere by relating the exterior information provided by these surface maps to the deep interior detected by MWR.

Since Aug 27, 2016, MWR has obtained over 50 perijoves, all scanning Jupiter’s atmosphere from North to South, covering various longitudes. We extend our calibration stability investigation to cover 7 years of observations, using our error analysis process. After removing the calibration drift, we combine observations from all perijoves to study the global-averaged atmosphere and the discrete features. We compare them with Jupiter’s surface atmosphere images taken by JunoCam, HST and JIRAM, and retrieve the corresponding NH3 volume mixing ratio from surface to over 100 bars.

No comments here