Romuald Zalubas, a long-time member of the Atomic Spectroscopy Group of the National Institute of Standards and Technology, died of a stroke on June 27, 2003.
Romuald was born in Pandelys, Lithuania in 1911. He studied mathematics and physics at the University of Kaunas, Lithuania, earning a master's degree there in 1936. He then became an assistant at the Astronomical Observatory of Vilnius and an inspector at the Trade Teacher's Institute. Near the end of the Second World War, with the coming communist takeover of Lithuania, he and his wife and young son fled to Germany, where he became director of a high school for Lithuanian refugees. In 1949 he emigrated to the U.S., first lecturing in mathematics and physics in Nazareth College in Rochester, N.Y. and then at Georgetown University in Washington, D.C. In 1955 he was awarded a PhD Degree in astrophysics from Georgetown. His thesis was entitled "An Investigation of Faint Lines in the Solar Spectrum Between 5000 Å and 6000 Å."
After completing his PhD degree, Romuald came to the National Bureau of Standards (NBS), now the National Institute of Standards and Technology (NIST). His research at NBS centered on the observation and analysis of complex atomic spectra. He measured and analyzed the spectra of neutral and singly ionized thorium, and helped establish standard wavelengths in these spectra that served to calibrate spectra of high-resolution spectrometers for many years. His research also included work on the analysis of neutral praseodymium and five-times ionized yttrium, as well as several data compilations. His experimental work entailed photographing spectra having thousands of lines with high-resolution spectrometers. Often the spectra were excited in a magnetic field. This provided information about the J-values and Landé g-values of the combining levels. When all of this information was completed, mainframe computers were used to try to break the code of the meaning of these data to deduce the energy levels that give rise to the spectra. This is a time consuming process that requires extreme patience as well as confidence that all of this work will lead to an understandable energy level structure for the atom. The investigation of a single atom might take two, three, or more years. Romus, as he was normally called, indeed had the personal attributes to be successful at this challenging enterprise.
Of all his publications, Romus was probably best known for the major compilation "Atomic Energy Levels-The Rare Earth Elements," published in 1978 in collaboration with William Martin and Lucy Hagan. This 411 page volume completed the NBS series of four volumes on atomic energy levels. Charlotte Moore Sitterly published the first three volumes, Atomic Energy Levels as Derived from the Analyses of Optical Spectra, in 1949, 1952, and 1958. The rare earth volume contains energy level data for 66 different rare earth atoms and ions.
Romus was a member of the American Astronomical Society, Sigma Xi, and the Lithuanian American Catholic Academy of Sciences. He was a fellow of the Optical Society of America and the American Association for the Advancement of Science. He retired from NBS in 1981, but continued on as Guest Researcher working on data compilations until 1987.
In the Atomic Spectroscopy Group, Romus was well known for his strong anticommunist views and his dry wit. He was generous in helping others with their research. He enjoyed mentoring summer students and giving fatherly advice to younger members of the Group. Romus was an expert at fabricating electrodeless discharge lamps, and made many lamps for himself and others as well. He donated quite a few of his lamps to other laboratories and observatories for use as a source of wavelength standards.
Romus was especially proud of the new home in Silver Spring that he and his wife, Alexandra, and son, Paul, moved to in 1963. To him it signified how much he had achieved after coming to the U.S. with nearly nothing to his name. Most of his leisure time was spent on the plants and garden for this house. Much of the social life of the Atomic Spectroscopy Group at that time revolved around gatherings that he and Alexandra held in their home. Romus also took great pleasure in following the activities of his three grandchildren, Mark, Eugene, and Lara, with whom he was very close.